Generating Function Identities for ζ(2n+2), ζ(2n+3) via the WZ Method
نویسندگان
چکیده
Using WZ-pairs we present simpler proofs of Koecher, Leshchiner and BaileyBorwein-Bradley’s identities for generating functions of the sequences {ζ(2n+2)}n≥0 and {ζ(2n + 3)}n≥0. By the same method, we give several new representations for these generating functions yielding faster convergent series for values of the Riemann zeta function.
منابع مشابه
Experimental Determination of Apéry-like Identities for ς(2n + 2)
We document the discovery of two generating functions for ζ(2n + 2), analogous to earlier work for ζ(2n + 1) and ζ(4n + 3), initiated by Koecher and pursued further by Borwein, Bradley and others.
متن کامل6 Experimental Determination of Apéry - Like Identities for ζ ( 2 n + 2 )
We document the discovery of two generating functions for ζ(2n + 2), analogous to earlier work for ζ(2n + 1) and ζ(4n + 3), initiated by Koecher and pursued further by Borwein, Bradley and others.
متن کاملSimultaneous Generation for Zeta Values by the Markov-WZ Method
By application of the Markov-WZ method, we prove a more general form of a bivariate generating function identity containing, as particular cases, Koecher’s and Almkvist-Granville’s Apéry-like formulae for odd zeta values. As a consequence, we get a new identity producing Apéry-like series for all ζ(2n+ 4m+ 3), n,m ≥ 0, convergent at the geometric rate with ratio 2−10.
متن کاملSeries acceleration formulae for beta values
We prove generating function identities producing fast convergent series for the sequences β(2n + 1), β(2n + 2) and β(2n+3), where β is Dirichlet's beta function. In particular, we obtain a new accelerated series for Catalan's constant convergent at a geometric rate with ratio 2 −10 , which can be considered as an analog of Amdeberhan-Zeilberger's series for ζ(3).
متن کاملAn exotic shuffle relation for multiple zeta values
In this short note we will provide a new proof of the following exotic shuffle relation of multiple zeta values: ζ({2}x{3, 1}) = ( 2n+m m ) π (2n+ 1) · (4n+ 2m+ 1)! . This was proved by Zagier when n = 0, by Broadhurst when m = 0, and by Borwein, Bradley, and Broadhurst when m = 1. In general this was proved by Bowman and Bradley. Our new idea is to use the method of Borwein et al. to reduce th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008